วันจันทร์ที่ 18 กุมภาพันธ์ พ.ศ. 2556

องค์ประกอบของระบบสุริยะ


     ดวงอาทิตย์ (The Sun)  เป็นดาวฤกษ์ที่อยู่ตรงตำแหน่งศูนย์กลางของระบบสุริยะและเป็นศูนย์กลาง
ของแรงโน้มถ่วง ทำให้ดาวเคราะห์และบริวารทั้งหลายโคจรล้อมรอบ


ระบบสุริยะ

     ดาวเคราะห์ชั้นใน (Inner Planets)  เป็นดาวเคราะห์ขนาดเล็ก มีความหนาแน่นสูงและพื้นผิวเป็น
 ของแข็ง ซึ่งส่วนใหญ่เป็นธาตุหนัก มีบรรยากาศอยู่เบาบาง ทั้งนี้เนื่องจากอิทธิพลจากความร้อนของ
 ดวงอาทิตย์และลมสุริยะ ทำให้ธาตุเบาเสียประจุ ไม่สามารถดำรงสถานะอยู่ได้   ดาวเคราะห์ชั้นใน
 บางครั้งเรียกว่า ดาวเคราะห์พื้นแข็ง “Terrestrial Planets"เนื่องจากมีพื้นผิวเป็นของแข็งคล้ายคลึง
 กับโลก  ดาวเคราะห์ชั้นในมี 4 ดวง คือ ดาวพุธ  ดาวศุกร์  โลก
   และดาวอังคาร

     ดาวเคราะห์ชั้นนอก (Outer Planets)  เป็นดาวเคราะห์ขนาดใหญ่ แต่มีความหนาแน่นต่ำ เกิดจาก
 การสะสมตัวของธาตุเบาอย่างช้าๆ  ทำนองเดียวกับการก่อตัวของก้อนหิมะ เนื่องจากได้รับอิทธิพลของ
 ความร้อนและลมสุริยะจากดวงอาทิตย์เพียงเล็กน้อย  ดาวเคราะห์พวกนี้จึงมีแก่นขนาดเล็กห่อหุ้มด้วย
 ก๊าซจำนวนมหาสาร  บางครั้งเราเรียกดาวเคราะห์ประเภทนี้ว่า ดาวเคราะห์ก๊าซยักษ์ (Gas Giants) หรือ  Jovian Planets   ซึ่งหมายถึงดาวเคราะห์ที่มีคุณสมบัติคล้ายดาวพฤหัสบดี  ดาวเคราะห์ชั้นนอกมี 4 ดวง
 คือ ดาวพฤหัสบดี    ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูน

     ดวงจันทร์บริวาร (Satellites)  โลกมิใช่ดาวเคราะห์เพียงดวงเดียวที่มีดวงจันทร์บริวาร  โลกมีบริวาร
 ชื่อว่า “ดวงจันทร์” (The Moon)  ขณะที่ดาวเคราะห์ดวงอื่นก็มีบริวารเช่นกัน  เช่น ดาวพฤหัสบดีมี
 ดวงจันทร์ขนาดใหญ่ 4 ดวงชื่อ ไอโอ (Io), ยูโรปา (Europa), กันนีมีด (ganymede) และคัลลิสโต (Callisto)  ดาวเคราะห์และดวงจันทร์ถือกำเนิดขึ้นพร้อมๆ กัน เพียงแต่ดวงจันทร์มิได้รวมตัวกับ
 ดาวเคราะห์โดยตรง แต่ก่อตัวขึ้นภายในวงโคจรของดาวเคราะห์  เราจะสังเกตได้ว่า หากมองจากด้านบน
 ของระบบสุริยะ  จะเห็นได้ว่า ทั้งดวงอาทิตย์    ดาวเคราะห์และดวงจันทร์ส่วนใหญ่  จะหมุนรอบตัวเองในทิศทวนเข็มนาฬิกา  และโคจรรอบดวงทิตย์ในทิศทวนเข็มนาฬิกาเช่นกันหากมองจากด้านข้างของ
 ระบบสุริยะก็จะพบว่า    ทั้งดวงอาทิตย์ ดาวเคราะห์ และดวงจันทร์บริวาร จะอยู่ในระนาบที่ใกล้เคียงกับ
 สุริยะวิถีมาก  ทั้งนี้ก็เนื่องมาจากระบบสุริยะทั้งระบบ ก็กำเนิดขึ้นพร้อมๆ กัน โดยการยุบและหมุนตัว
 ของจานฝุ่น  

     ดาวเคราะห์แคระ (Dwarf Planets) เป็นนิยามใหม่ของสมาพันธ์ดาราศาสตร์สากล (International    Astronomical Union) ที่กล่าวถึง วัตถุขนาดเล็กที่มีรูปร่างคล้ายทรงกลม แต่มีวงโคจรเป็นรูปรี    ซ้อนทับกับดาวเคราะห์ดวงอื่น และไม่อยู่ในระนาบของสุริยะวิถี ซึ่งได้แก่ ซีรีส พัลลาส พลูโต    และดาวที่เพิ่งค้นพบใหม่ เช่น อีริส เซ็ดนา วารูนา  เป็นต้น (ดูภาพที่ 3 ประกอบ)


ขนาดของดาวเคราะห์แคระเปรียบเทียบกับโลก (ที่มา: NASA, JPL) 

     ดาวเคราะห์น้อย  (Asteroids) เกิดจากวัสดุที่ไม่สามารถรวมตัวกันเป็นดาวเคราะห์ได้    เนื่องจากแรงรบกวนจากดาวเคราะห์ขนาดใหญ่ เช่น ดาวพฤหัสบดี และดาวเสาร์  ดังเราจะพบว่า   ประชากรของดาวเคราะห์น้อยส่วนใหญ่อยู่ที่ “แถบดาวเคราะห์น้อย” (Asteroid belt)   ซึ่งอยู่ระหว่างวงโคจรของดาวอังคารและดาวพฤหัสบดี   ดาวเคราะห์แคระเช่น เซเรส   ก็เคยจัดว่าเป็นดาวเคราะห์น้อยที่มีขนาดใหญ่ที่สุด (เส้นผ่านศูนย์กลาง 900 กิโลเมตร)    ดาวเคราะห์น้อยส่วนใหญ่จะมีวงโคจรรอบดวงอาทิตย์เป็นรูปรีมาก  และไม่อยู่ในระนาบสุริยะวิถี   ขณะนี้มีการค้นพบดาวเคราะห์น้อยแล้วประมาณ 3 แสนดวง


แถบดาวเคราะห์น้อย (ที่มา: Pearson Prentice Hall, Inc) 

     ดาวหาง (Comets) เป็นวัตถุขนาดเล็กเช่นเดียวกับดาวเคราะห์น้อย    แต่มีวงโคจรรอบดวงอาทิตย์เป็นวงยาวรีมาก  มีองค์ประกอบส่วนใหญ่เป็นก๊าซในสถานะของแข็ง    เมื่อดาวหางเคลื่อนที่เข้าหาดวงอาทิตย์ ความร้อนจะให้มวลของมันระเหิดกลายเป็นก๊าซ    ลมสุริยะเป่าให้ก๊าซเล่านั้นพุ่งออกไปในทิศทางตรงข้ามกับดวงอาทิตย์ กลายเป็นหาง

     วัตถุในแถบไคเปอร์ (Kuiper Belt Objects) เป็นวัตถุที่หนาวเย็นเช่นเดียวกับดาวหาง   แต่มีวงโคจรอยู่ถัดจากดาวเนปจูนออกไป บางครั้งจึงเรียกว่า Trans Neptune Objects    ทั้งนี้แถบคุยเปอร์จะอยู่ในระนาบของสุริยะวิถี โดยมีระยะห่างออกไปตั้งแต่ 40 – 500 AU (AU ย่อมาจาก   Astronomical Unit หรือ หน่วยดาราศาสตร์ เท่ากับระยะทางระหว่างโลกถึงดวงอาทิตย์ หรือ 150   ล้านกิโลเมตร)   ดาวพลูโตเองก็จัดว่าเป็นวัตถุในแถบคุยเปอร์ รวมทั้งดาวเคราะห์แคระซึ่งค้นพบใหม่ เช่น อีริส   เซ็ดนา วารูนา  เป็นต้น  ปัจจุบันมีการค้นพบวัตถุในแถบไคเปอร์แล้วมากกว่า 35,000 ดวง


แถบไคเปอร์ และวงโคจรของดาวพลูโต (ที่มา: NASA, JPL) 

     เมฆออร์ท (Oort Cloud)  เป็นสมมติฐานที่ตั้งขึ้นโดยนักดาราศาสตร์ชาวเนเธอร์แลนด์ชื่อ แจน ออร์ท (Jan Oort) ซึ่งเชื่อว่า ณ สุดขอบของระบบสุริยะ รัศมีประมาณ 50,000 AU จากดวงอาทิตย์  ระบบสุริยะ
 ของเราห่อหุ้มด้วยวัสดุก๊าซแข็ง ซึ่งหากมีแรงโน้มถ่วงจากภายนอกมากระทบกระเทือน   ก๊าซแข็งเหล่านี้ก็จะหลุดเข้าสู่วงโคจรรอบดวงอาทิตย์ กลายเป็นดาวหางวงโคจรคาบยาว (Long-period   comets)


ตำแหน่งของแถบไคเปอร์และเมฆออร์ท (ที่มา: NASA, JPL)

กำเนิดระบบสุริยะ


     ระบบสุริยะเกิดจากกลุ่มฝุ่นและก๊าซในอวกาศซึ่งเรียกว่า “โซลาร์เนบิวลา” (Solar Nebula) รวมตัวกันเมื่อประมาณ 4,600 ล้านปีมาแล้ว  (นักวิทยาศาสตร์คำนวณจากอัตราการหลอมรวมไฮโดรเจนเป็นฮีเลียมภายในดวงอาทิตย์)  เมื่อสสารมากขึ้น แรงโน้มถ่วงระหว่างมวลสารมากขึ้นตามไปด้วย กลุ่มฝุ่นก๊าซยุบตัวหมุนเป็นรูปจานตามหลักอนุรักษ์โมเมนตัมเชิงมุม ดังภาพที่ 1    แรงโน้มถ่วงที่ใจกลางสร้างแรงกดดันมากทำให้ก๊าซมีอุณหภูมิสูงพอที่จุดปฏิกิริยานิวเคลียร์ฟิวชัน หลอมรวมอะตอมของไฮโดรเจนให้เป็นฮีเลียม  ดวงอาทิตย์จึงถือกำเนิดเป็นดาวฤกษ์


กำเนิดระบบสุริยะ

     วัสดุชั้นรอบนอกของดวงอาทิตย์มีอุณหภูมิต่ำกว่า ยังโคจรไปตามโมเมนตัมที่มีอยู่เดิม รอบดวงอาทิตย์เป็นชั้นๆ   มวลสารของแต่ละชั้นพยายามรวมตัวกันด้วยแรงโน้มถ่วง  ด้วยเหตุนี้ดาวเคราะห์จึงถือกำเนิดขึ้นเป็นรูปทรงกลม เนื่องจากมวลสารพุ่งใส่กันจากทุกทิศทาง  

     อิทธิพลจากแรงโน้มถ่วงทำให้วัสดุที่อยู่รอบๆ พยายามพุ่งเข้าหาดาวเคราะห์  ถ้าทิศทางของการเคลื่อนที่มีมุมลึกพอ ก็จะพุ่งชนดาวเคราะห์ทำให้ดาวเคราะห์นั้นมีขนาดใหญ่ขึ้น เนื่องจากมวลรวมกัน  แต่ถ้ามุมของการพุ่งชนตื้นเกินไป ก็จะทำให้แฉลบเข้าสู่วงโคจร และเกิดการรวมตัวต่างหากกลายเป็นดวงจันทร์บริวาร  ดังเราจะเห็นได้ว่า ดาวเคราะห์ขนาดใหญ่ เช่น ดาวพฤหัสบดี จะมีดวงจันทร์บริวารหลายดวงและมีวงโคจรหลายชั้น เนื่องจากมีมวลสารมากและแรงโน้มถ่วงมหาศาล  ต่างกับดาวพุธซึ่งมี
 ขนาดเล็กมีแรงโน้มถ่วงน้อย ไม่มีดวงจันทร์บริวารเลย  วัสดุที่อยู่โดยรอบจะพุ่งเข้าหาดวงอาทิตย์ เพราะ
 มีแรงโน้มถ่วงมากกว่าเยอะ

ระยะห่างของดาวฤกษ์

     ดาวฤกษ์ส่วนใหญ่ที่นักเรียนเห็นบนท้องฟ้าอยู่ไกลมาก ดวงอาทิตย์และดาวพรอก ซิมาเซนเทอรีเป็นเพียงดาวฤกษ์สองดวงในบรรดาดาวฤกษ์หลายแสนล้านดวงที่ประกอบกันเป็นกาแล็กซี (Galaxy) กาแล็กซีหลายพันล้านกาแล็กซีรวมอยู่ในเอกภพ นักดาราศาสตร์จึงคิดค้นหน่วยวัดระยะทางที่เรียกว่า ปีแสง (light-year) ซึ่งเป็นระยะทางที่แสงใช้เวลาเดิน ทางเป็นเวลา 1 ปี แสงเดินทางด้วยความเร็วประมาณ 300,000 กิโลเมตรต่อวินาที ดังนั้น ระยะทาง 1 ปีแสงจึงมีค่าเท่ากับ 9.5 ล้านล้านกิโลเมตร 

 
     ท้องฟ้าในเวลากลางคืนที่เต็มไปด้วยดาวฤกษ์ระยิบระยับอยู่มากมาย นัก ดาราศาสตร์ได้พบวิธีที่จะวัดระยะห่างของดาวฤกษ์เหล่านี้โดยวิธีการใช้ แพรัลแลกซ์(Parallax) 

แพรัลแลกซ์ คือการย้ายตำแหน่งปรากฏ ของวัตถุเมื่อผู้สังเกตุอยู่ในตำแหน่งต่างกัน 

     นักวิทยาศาสตร์ใช้ปรากฏการณ์แพรัลแลกซ์ในการวัดระยะทางของดาวฤกษ์ที่อยู่ใกล้เคียงกับเรา โดยการสังเกตดาวฤกษ์ดวงที่เราต้องการวัดระยะทางในวันที่โลกอยู่ด้านหนึ่งของดวงอาทิตย์ และสังเกตดาวฤกษ์ดวงนั้นอีกครั้งเมื่อโลกโคจรมาอยู่อีกด้านหนึ่งของดวงอาทิตย์ ในอีก 6 เดือนถัดไป นักดาราศาสตร์สามารถวัดได้ว่าดาวฤกษ์ดวงนั้นย้ายตำแหน่งปรากฏไปเท่าไรโดยเทียบกับดาวฤกษ์ที่อยู่เบื้องหลังซึ่งอยู่ห่างไกลเรามาก ยิ่งตำแหน่งปรากฏย้ายไปมากเท่าใด แสดงว่าดาวฤกษ์ดวงนั้นอยู่ใกล้เรามากเท่านั้น ในทางตรงกันข้ามถ้าตำแหน่งปรากฏของดาวฤกษ์แทบจะไม่มีการย้ายตำแหน่งเลยแสดงว่าดาวฤกษ์นั้นอยู่ไกลจากเรามาก 

     เราไม่สามารถใช้วิธีแพรัลแลกซ์ในการวัดระยะห่างของดาวฤกษ์ที่มากกว่า 1,000 ปีแสง เพราะที่ระยะทางดังกล่าว การเปลี่ยนตำแหน่งของผู้สังเกตบนโลกจากด้านหนึ่งของดวงอาทิตย์ไปยังอีก ด้านหนึ่งของดวงอาทิตย์แทบจะมองไม่เห็นการย้ายตำแหน่งปรากฏของดาวฤกษ์นั้นเลย 

วิวัฒนาการของดาวฤกษ์



     วิวัฒนาการของดาวฤกษ์ เป็นกระบวนการที่ดาวฤกษ์เปลี่ยนแปลงองค์ประกอบภายในตามลำดับไปในช่วงอายุของมัน ซึ่งจะมีลักษณะแตกต่างกันตามขนาดของมวลของดาวฤกษ์นั้นๆ อายุของดาวฤกษ์มีตั้งแต่ไม่กี่ล้านปี (สำหรับดาวฤกษ์ที่มีมวลมากๆ) ไปจนถึงหลายล้านล้านปี (สำหรับดาวฤกษ์ที่มีมวลน้อย) ซึ่งอาจจะมากกว่าอายุของเอกภพเสียอีก

      การศึกษาวิวัฒนาการของดาวฤกษ์มิได้ทำเพียงการเฝ้าสังเกตดาวดวงหนึ่งดวงใด ดาวฤกษ์ส่วนใหญ่มีการเปลี่ยนแปลงอย่างช้ามากจนยากจะตรวจจับได้แม้เวลาจะผ่านไปหลายศตวรรษ นักฟิสิกส์ดาราศาสตร์ทำความเข้าใจกับวิวัฒนาการของดาวฤกษ์โดยการสังเกตการณ์ดาวจำนวนมาก โดยที่แต่ละดวงอยู่ที่ช่วงอายุแตกต่างกัน แล้วทำการจำลองโครงสร้างของดาวออกมาโดยใช้แบบจำลองคอมพิวเตอร์ช่วย


      วิวัฒนาการของดาวฤกษ์เริ่มต้นขึ้นตั้งแต่การพังทลายของแรงโน้มถ่วงของเมฆโมเลกุลขนาดยักษ์ (GMC) เมฆโมเลกุลโดยมากจะมีขนาดกว้างประมาณ 100 ปีแสง และมีมวลประมาณ 6,000,000 มวลดวงอาทิตย์ เมื่อแรงโน้มถ่วงพังทลายลง เมฆโมเลกุลขนาดยักษ์จะแตกออกเป็นชิ้นเล็กชิ้นน้อย แก๊สจากเศษเมฆแต่ละส่วนจะปล่อยพลังงานศักย์จากแรงโน้มถ่วงออกมากลายเป็นความร้อน เมื่ออุณหภูมิและความดันเพิ่มสูงขึ้น เศษซากจะอัดแน่นมากขึ้นกลายเป็นรูปทรงกลมหมุนของแก๊สที่ร้อนจัด รู้จักกันในชื่อว่า ดาวฤกษ์ก่อนเกิด (protostar)

     ดาวฤกษ์ก่อนเกิดที่มีมวลน้อยกว่า 0.08 มวลดวงอาทิตย์จะไม่สามารถทำอุณหภูมิได้สูงพอให้เกิดปฏิกิริยานิวเคลียร์ฟิวชันของไฮโดรเจนได้ ดาวเหล่านี้จะกลายเป็นดาวแคระน้ำตาล ดาวแคระน้ำตาลที่มีมวลมากกว่า 13 เท่าของมวลดาวพฤหัสบดี (ประมาณ 2.5 × 1028 กก.) จะสามารถทำให้ดิวเทอเรียมหลอมละลายได้ นักดาราศาสตร์จำนวนหนึ่งจะเรียกเฉพาะวัตถุทางดาราศาสตร์ที่มีคุณสมบัติดังกล่าวว่าเป็นดาวแคระน้ำตาล แต่วัตถุอื่นที่ใหญ่กว่าดาวฤกษ์แต่เล็กกว่าดาวประเภทนี้จะเรียกว่าเป็นวัตถุกึ่งดาว (sub-stellar object) แต่ไม่ว่าจะเป็นดาวประเภทใด ดิวเทอเรียมจะหลอมเหลวได้หรือไม่ ต่างก็ส่องแสงเพียงริบหรี่และค่อยๆ ตายไปอย่างช้าๆ อุณหภูมิของมันลดลงเรื่อยๆ ตลอดช่วงเวลาหลายร้อยล้านปี

     สำหรับดาวฤกษ์ก่อนเกิดที่มีมวลมากกว่า อุณหภูมิที่แกนกลางสามารถขึ้นไปได้สูงถึง 10 เมกะเคลวิน ทำให้เริ่มต้นปฏิกิริยาลูกโซ่โปรตอน-โปรตอน และทำให้ไฮโดรเจนสามารถหลอมเหลวดิวเทอเรียมและฮีเลียมได้ สำหรับดาวที่มีมวลมากกว่า 1 เท่าของมวลดวงอาทิตย์ กระบวนการวงรอบ CNO จะทำให้เกิดองค์ประกอบสำคัญในการสร้างพลังงาน และทำให้ปฏิกิริยานิวเคลียร์ฟิวชันดำเนินไปต่อเนื่องอย่างรวดเร็วจนกระทั่งเข้าสู่สภาวะสมดุลของไฮโดรสแตติกส์ คือการที่พลังงานที่ปลดปล่อยจากแกนกลางทำให้เกิด "แรงดันการแผ่รังสี" ที่สมดุลกับมวลของดาวฤกษ์ ซึ่งจะป้องกันการยุบตัวจากแรงโน้มถ่วง ดาวฤกษ์นั้นก็จะเข้าสู่สภาวะที่เสถียร และเริ่มดำเนินไปตามแถบลำดับหลักของมันบนเส้นทางวิวัฒนาการ

     ดาวฤกษ์เกิดใหม่จะเข้ามาอยู่ในช่วงหนึ่งช่วงใดบนแถบลำดับหลักตามไดอะแกรมของเฮิร์ตสปรัง-รัสเซลล์ โดยที่ประเภทสเปกตรัมของแถบลำดับหลักขึ้นอยู่กับมวลของดาวฤกษ์ดวงนั้น ดาวแคระแดงมวลน้อยที่มีขนาดเล็กและอุณหภูมิค่อนข้างต่ำจะเผาผลาญไฮโดรเจนอย่างช้าๆ และอยู่บนแถบลำดับหลักได้นานเป็นเวลาหลายแสนล้านปี ขณะที่ดาวยักษ์อุณหภูมิสูงและมีมวลมากจะออกจากแถบลำดับหลักไปในเวลาเพียงไม่กี่ล้านปีเท่านั้น ดาวฤกษ์ขนาดกลางเช่นดวงอาทิตย์ของเราจะอยู่บนแถบลำดับหลักได้ประมาณ 1 หมื่นล้านปี เชื่อว่าปัจจุบันดวงอาทิตย์อยู่ในช่วงกึ่งกลางของอายุของมันแล้ว แต่อย่างไรก็ยังคงอยู่บนแถบลำดับหลักอยู่

การจัดประเภทของดาวฤกษ์

     การจัดประเภทของดาวฤกษ์ คือระบบการจัดกลุ่มดาวฤกษ์โดยพิจารณาจากอุณหภูมิพื้นผิวของดาวและคุณลักษณะทางสเปกตรัมที่เกี่ยวข้อง และอาจมีรายละเอียดปลีกย่อยอื่นๆ ติดตามมาก็ได้ อุณหภูมิของดาวฤกษ์หาได้จาก กฎการแทนที่ของเวียน แต่วิธีการนี้ทำได้ค่อนข้างยากสำหรับดาวที่อยู่ห่างไกลออกไปมากๆ สเปกโตรสโกปีของดาวทำให้เราสามารถจัดประเภทดาวได้จากแถบการดูดกลืนแสง ซึ่งสามารถสังเกตเห็นได้เฉพาะในช่วงอุณหภูมิเฉพาะเจาะจงช่วงหนึ่ง การจัดประเภทของดาวฤกษ์แบบดั้งเดิมมีการจัดระดับตั้งแต่ A ถึง Q ซึ่งเป็นที่มาของการกำหนดรหัสสเปกตรัมในปัจจุบัน


การจัดระดับของเซคคิ
     ระหว่างช่วงคริสต์ทศวรรษ 1860 ถึง 1870 นักวิชาการด้านสเปกโตรสโกปีของดาวฤกษ์ยุคแรกๆ ชื่อ คุณพ่อแองเจโล เซคคิ ได้คิดค้นระบบจัดประเภทของดาวเคราะห์แบบเซคคิขึ้นเพื่อช่วยแบ่งประเภทสเปกตรัมที่ได้จากการสังเกต ปี ค.ศ. 1866 เขาได้พัฒนาระบบจัดแบ่งสเปกตรัมออกเป็น 3 ระดับ:
ดังนี้
Class I: สำหรับดาวฤกษ์สีขาวและสีน้ำเงินซึ่งมีแถบไฮโดรเจนค่อนข้างเข้ม เช่นดาววีกา และดาวอัลแทร์                      การจัดระดับนี้กินความรวมการจัดระดับสมัยใหม่ทั้งแบบคลาส A และคลาส F ในช่วงต้น

Class I, Orion subtype: เป็นประเภทย่อยของคลาส I ซึ่งมีแถบค่อนข้างแคบแทนที่จะเป็นแถบกว้าง เช่นดาวไรเจล และ γ โอไรออนิส สำหรับการจัดระดับสมัยใหม่ ประเภทนี้จะสอดคล้องกับดาวฤกษ์คลาส B

Class II: สำหรับดาวฤกษ์สีเหลืองที่มีความเข้มข้นของไฮโดรเจนน้อยกว่า แต่มีแถบความเป็นโลหะเด่นชัด เช่นดาวอาร์คตุรุส และดาวคาเพลลา เทียบกับการจัดระดับสมัยใหม่จะได้ประมาณคลาส G รวมไปถึงคลาส K และคลาส F ในช่วงปลายๆ

Class III: สำหรับดาวฤกษ์สีส้มจนถึงสีแดงที่มีแถบสเปกตรัมค่อนข้างซับซ้อน เช่นดาวบีเทลจุส และดาวปาริชาต เทียบกับการจัดระดับสมัยใหม่ได้เท่ากับคลาส M

เซคคิได้ค้นพบดาวคาร์บอนในปี ค.ศ. 1868 เขาจัดดาวประเภทนี้แยกไว้เป็นประเภทต่างหาก คือ
Class IV: สำหรับดาวฤกษ์สีแดงที่มีแถบคาร์บอนอย่างโดดเด่น

เมื่อถึงปี ค.ศ. 1877 เขาได้เพิ่มการจัดระดับอีกหนึ่งระดับ คือ
Class V: สำหรับดาวฤกษ์ที่มีแถบการแพร่ (emission-line) เช่น ดาว γ แคสสิโอปี and β ไลเร

ช่วงปลายคริสต์ทศวรรษ 1890 การจัดระดับแบบนี้เสื่อมความนิยมลงไป การจัดระดับของฮาร์วาร์ดเริ่มเข้ามาแทนที่ ซึ่งปรากฏในหัวข้อถัดไป 

การจัดระดับของฮาร์วาร์ด
      การจัดระดับดาวฤกษ์ของฮาร์วาร์ดเป็นรูปแบบการจัดหนึ่งมิติ แต่ละระดับจะบ่งชี้ถึงอุณหภูมิบรรยากาศของดาวฤกษ์โดยเรียงลำดับจากดาวที่ร้อนที่สุดไปยังดาวที่เย็นที่สุด ดังแสดงในตารางต่อไปนี้ (โดยเปรียบเทียบมวล รัศมี และความส่องสว่างของดาวฤกษ์เทียบกับดวงอาทิตย์


ดาวฤกษ์ - star



     ดาวฤกษ์ (อังกฤษ: star) คือวัตถุท้องฟ้าที่เป็นก้อนพลาสมาสว่างขนาดใหญ่ที่คงอยู่ได้ด้วยแรงโน้มถ่วง ดาวฤกษ์ที่อยู่ใกล้โลกมากที่สุด คือ ดวงอาทิตย์ ซึ่งเป็นแหล่งพลังงานหลักของโลก เราสามารถมองเห็นดาวฤกษ์อื่น ๆ ได้บนท้องฟ้ายามราตรี หากไม่มีแสงจากดวงอาทิตย์บดบัง ในประวัติศาสตร์ ดาวฤกษ์ที่โดดเด่นที่สุดบนทรงกลมท้องฟ้าจะถูกจัดเข้าด้วยกันเป็นกลุ่มดาว และดาวฤกษ์ที่สว่างที่สุดจะได้รับการตั้งชื่อโดยเฉพาะ นักดาราศาสตร์ได้จัดทำบัญชีรายชื่อดาวฤกษ์เพิ่มเติมขึ้นมากมาย เพื่อใช้เป็นมาตรฐานในการตั้งชื่อดาวฤกษ์

     ตลอดอายุขัยส่วนใหญ่ของดาวฤกษ์ มันจะเปล่งแสงได้เนื่องจากปฏิกิริยาเทอร์โมนิวเคลียร์ฟิวชั่นที่แกนของดาว ซึ่งจะปลดปล่อยพลังงานจากภายในของดาว จากนั้นจึงแผ่รังสีออกไปสู่อวกาศ ธาตุเคมีเกือบทั้งหมดซึ่งเกิดขึ้นโดยธรรมชาติและหนักกว่าฮีเลียมมีกำเนิดมาจากดาวฤกษ์ทั้งสิ้น โดยอาจเกิดจากการสังเคราะห์นิวเคลียสของดาวฤกษ์ระหว่างที่ดาวยังมีชีวิตอยู่ หรือเกิดจากการสังเคราะห์นิวเคลียสของซูเปอร์โนวาหลังจากที่ดาวฤกษ์เกิดการระเบิดหลังสิ้นอายุขัย นักดาราศาสตร์สามารถระบุขนาดของมวล อายุ ส่วนประกอบทางเคมี และคุณสมบัติของดาวฤกษ์อีกหลายประการได้จากการสังเกตสเปกตรัม ความสว่าง และการเคลื่อนที่ในอวกาศ มวลรวมของดาวฤกษ์เป็นตัวกำหนดหลักในลำดับวิวัฒนาการและชะตากรรมในบั้นปลายของดาว ส่วนคุณสมบัติอื่นของดาวฤกษ์ เช่น เส้นผ่านศูนย์กลาง การหมุน การเคลื่อนที่ และอุณหภูมิ ถูกกำหนดจากประวัติวิวัฒนาการของมัน แผนภาพคู่ลำดับระหว่างอุณหภูมิกับความสว่างของดาวฤกษ์จำนวนมาก ที่รู้จักกันในชื่อ ไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ (H-R ไดอะแกรม) ช่วยทำให้สามารถระบุอายุและรูปแบบวิวัฒนาการของดาวฤกษ์ได้

     ดาวฤกษ์ถือกำเนิดขึ้นจากเมฆโมเลกุลที่ยุบตัวโดยมีไฮโดรเจนเป็นส่วนประกอบหลัก รวมไปถึงฮีเลียม และธาตุอื่นที่หนักกว่าอีกจำนวนหนึ่ง เมื่อแก่นของดาวฤกษ์มีความหนาแน่นมากเพียงพอ ไฮโดรเจนบางส่วนจะถูกเปลี่ยนเป็นฮีเลียมผ่านกระบวนการนิวเคลียร์ฟิวชั่นอย่างต่อเนื่อง ส่วนภายในที่เหลือของดาวฤกษ์จะนำพลังงานออกจากแก่นผ่านทางกระบวนการแผ่รังสีและการพาความร้อนประกอบกัน ความดันภายในของดาวฤกษ์ป้องกันมิให้มันยุบตัวต่อไปจากแรงโน้มถ่วงของมันเอง เมื่อเชื้อเพลิงไฮโดรเจนที่แก่นของดาวหมด ดาวฤกษ์ที่มีมวลอย่างน้อย 0.4 เท่าของดวงอาทิตย์ จะพองตัวออกจนกลายเป็นดาวยักษ์แดง ซึ่งในบางกรณี ดาวเหล่านี้จะหลอมธาตุที่หนักกว่าที่แก่นหรือในเปลือกรอบแก่นของดาว จากนั้น ดาวยักษ์แดงจะวิวัฒนาการไปสู่รูปแบบเสื่อม มีการรีไซเคิลบางส่วนของสสารไปสู่สสารระหว่างดาว สสารเหล่านี้จะก่อให้เกิดดาวฤกษ์รุ่นใหม่ซึ่งมีอัตราส่วนของธาตุหนักที่สูงกว่า

     ระบบดาวคู่และระบบดาวหลายดวงประกอบด้วยดาวฤกษ์สองดวงหรือมากกว่านั้นซึ่งยึดเหนี่ยวกันด้วยแรงโน้มถ่วง และส่วนใหญ่มักจะโคจรรอบกันในวงโคจรที่เสถียร เมื่อดาวฤกษ์ในระบบดาวดังกล่าวสองดวงมีวงโคจรใกล้กันมากเกินไป ปฏิกิริยาแรงโน้มถ่วงระหว่างดาวฤกษ์อาจส่งผลกระทบใหญ่หลวงต่อวิวัฒนาการของพวกมันได้ ดาวฤกษ์สามารถรวมตัวกันเป็นส่วนหนึ่งอยู่ในโครงสร้างขนาดใหญ่ที่ยึดเหนี่ยวกันด้วยแรงโน้มถ่วง เช่น กระจุกดาว หรือ ดาราจักร ได้

เอกภพ - Universe


   
     เอกภพ หรือ จักรวาล (Universe) เป็นระบบที่ใหญ่ที่สุดและไร้ขอบเขต และเป็นห้วงอวกาศที่เต็มไปด้วยดวงดาวจำนวนมหาศาล ซึ่งเราจะเรียกดวงดาวที่เกาะกันเป็นกลุ่มว่า กาแล็กซี  และในแต่ละกาแล็กซี ก็จะมีระบบของดาวฤกษ์ กระจุกดาว เนบิวลา หลุมดำ อุกกาบาต ฝุ่นผง กลุ่มก๊าซ และที่ว่างอยู่รวมกันอยู่ ซึ่งก็โลกอยู่ในกาแล็กซีหนึ่ง ที่เรียกกันว่า กาแล็กซีทางช้างเผือก นั่นเอง

     สำหรับต้นกำเนิดที่แท้จริงของ เอกภพ นั้น ที่จริงมีอยู่หลายทฤษฎี แต่ทฤษฎีที่ได้รับการยอมรับจากนักดาราศาสตร์มากที่สุดในปัจจุบัน ก็คือ ทฤษฎีบิ๊กแบง (Big Bang Theory) ของ จอร์จ เลอแมตร์ ที่เชื่อกันว่า เอกภพเริ่มต้นจากความเป็นศูนย์ ไม่มีเวลา ไม่มีแม้แต่ความว่างเปล่า และเอกภพกำเนิดขึ้นโดยการระเบิด ซึ่งหลังจากการระเบิดนั้น เอกภพ ก็เริ่มขยายตัวออกไป ก่อนที่จะเกิดอนุภาคมูลฐาน อะตอม และโมเลกุล ต่าง ๆ ขึ้นตามมาหลังจากนั้น ทั้งแรงระเบิดดังกล่าว ยังทำให้เกิดแรงดันระหว่างกาแล็กซีต่าง ๆ ให้ห่างกันออกไปเรื่อย ๆ ซึ่งแรงดันที่ถือว่าเป็นวิวัฒนาการของเอกภพมีอยู่แรง 2 แรง คือ แรงดันออกหลังจากการระเบิดครั้งใหญ่ และแรงโน้มถ่วงดึงดูดให้เอกภพเข้ามารวมตัวกัน ซึ่งทั้ง 2 แรงดังกล่าวเป็นปัจจัยสำคัญที่กำหนดลักษณะของ เอกภพ ดังนี้


เอกภพ

     เอกภพปิด (Closed Universe) คือ เอกภพมีความหนาแน่นของมวลสารและพลังงานมากเพียงพอ จนแรงโน้มถ่วงสามารถเอาชนะแรงดันออกหลังจากการระเบิดครั้งใหญ่ได้ ในที่สุดเอกภพจะหดตัวกลับ และถึงจุดจบที่เรียกว่า บิ๊กครันช์ (Big Crunch)

     เอกภพแบน (Flat Universe) คือ เอกภพมีความหนาแน่นของมวลสารและพลังงาน ในระดับที่ แรงโน้มถ่วง ได้ดุลกับแรงดันออกหลังจากการระเบิดครั้งใหญ่ ในที่สุดเอกภพจะขยายตัว แต่ด้วยอัตราที่ช้าลงเรื่อย ๆ

     เอกภพเปิด (Open Universe) คือ เอกภพมีความหนาแน่นของมวลสารและพลังงาน ต่ำเกินไป ทำให้แรงโน้มถ่วง ไม่สามารถเอาชนะแรงดันออกหลังจากการระเบิดครั้งใหญ่ได้ เอกภพจะขยายตัวอย่างต่อเนื่องไปเรื่อย ๆ จนกระทั่งอุณหภูมิของเอกภพเข้าใกล้ศูนย์องศาสัมบูรณ์ เมื่อถึงเวลานั้น จะไม่มีพลังงานหลงเหลืออยู่อีก อะตอมและโมเลกุลต่าง ๆ จะหยุดนิ่งไม่มีการเคลื่อนที่ใด ๆ เรียกว่า บิ๊กชิลล์ (Big Chill)

     แม้ปัจจุบันเรายังไม่อาจทราบได้ว่าเอกภพของเราจะมีลักษณะแบบใดในสามอย่างนี้ รวมถึงไม่อาจทราบด้วยว่า การเปลี่ยนแปลงของเอกภพ จะส่งผลกระทบเช่นไรต่อโลก แต่ทุกวันนี้ โลกก็ไม่ส่งสัญญาณเตือนกับเราด้วยภัยธรรมชาติต่าง ๆ ที่เกิดขึ้นทั่วโลกแล้วว่า หากมนุษย์ไม่หันมาถนอมโลกให้มากขึ้น สักวันมนุษย์อาจต้องสูญพันธุ์เหมือนไดโนเสาร์เมื่อหลายล้านปีก่อน